(3a^2+2a-5)/(a^2+3a-4)=5

Simple and best practice solution for (3a^2+2a-5)/(a^2+3a-4)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3a^2+2a-5)/(a^2+3a-4)=5 equation:



(3a^2+2a-5)/(a^2+3a-4)=5
We move all terms to the left:
(3a^2+2a-5)/(a^2+3a-4)-(5)=0
Domain of the equation: (a^2+3a-4)!=0
We move all terms containing a to the left, all other terms to the right
a^2+3a!=4
a∈R
We multiply all the terms by the denominator
(3a^2+2a-5)-5*(a^2+3a-4)=0
We multiply parentheses
-5a^2+(3a^2+2a-5)-15a+20=0
We get rid of parentheses
-5a^2+3a^2+2a-15a-5+20=0
We add all the numbers together, and all the variables
-2a^2-13a+15=0
a = -2; b = -13; c = +15;
Δ = b2-4ac
Δ = -132-4·(-2)·15
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-17}{2*-2}=\frac{-4}{-4} =1 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+17}{2*-2}=\frac{30}{-4} =-7+1/2 $

See similar equations:

| 12w+14w-6+4=2w+4-6 | | 9-(2x-3)=4 | | .5(x-8)=-3.5x+8 | | 2(b-7)=6 | | 54-4=14-9x | | 4^x+2.2^x-15=0 | | 2-t=15 | | 7s/7+35=189 | | 4^x+2.2^x=15 | | -4(2x+-5)=-44 | | 90/x=298 | | t÷6-7=16 | | 17/x+20=60 | | (3x-1)^(2)+(4x+1)^(2)=(5x-1)(5x+1)+1 | | (x×20÷100)+x=1000 | | 0,2(5x-2)=0,3(2x-1)-0,9 | | -1,14z-0,11=0,01 | | 5z+3(z-2)=6z-9 | | a÷5+5+8=11 | | 3x+2,7=9(x-1,1) | | (2x^2-3x-1)(x+5)=x | | -0,6x-4=-0,2x | | 41=6n+5 | | 3,6+0,2x=0,5x+1,2 | | 1,2y-0,33=5 | | (2x^2-3x-1)(x=5) | | 11=3n-4 | | 4w+-24=3w+3 | | 57-7x-11=-10 | | x(0.18)+(1-x)0.08=0.1 | | 5x-3(2x-4)=20 | | 0.5x+22=8 |

Equations solver categories